ROAD MAP TO

THE COMBINED SCIENCE CURRICULUM

Future careers in the NHS

Atomic structure

Elements and compounds Separating mixtures, Development of the periodic table. The development of the modelof Size and mass of atoms, Groups 1, 7, 0 and transition metals

Being a lab scientist

Resultant forces

Speed and velocity

Stopping distances

Acceleration

The distance -time relationship

Fundamentals in Reactions of acids with metals Neutralisation of acids and salt Chemistry: production, Soluble salts, Laboratory techniques, Particle Being a Formula 1 engineer theory, Atoms, elements and Scalar and vector quantities compounds Reactions of Contact and non-contact forces metals, Types of reactions Distance and displacement

Being a doctor Eukaryotes and prokaryotes Animal and plant cells Culturing microorganisms, Communicable diseases Types of pathogens

Fundamentals in Biology: Respiration, Photosynthesis Food webs/chains,

Interdependence Fundamentals in Physics: Forces, Newton's Laws acceleration, Speed Distance-time graphs, Using formulae

Ecosystems and processes Photosynthesis, chemosynthesis, aerobic and anaerobic Respiration and food chains

Adaptation and inheritance adaptation: Variation, inheritance, natural selection and extinction

Options

Zone 10

Motion and Pressure

Speed, distance and velocity time graphs Liquids and gases Turning forces

Body Systems: Levels of organisation Gas exchange Skeleton, joints and muscles

Sports science unit with PE

Trends in metals, non-metals and groups1,2 7 and 0. Chemical symbols and atomic structure of common elements

smoking.

Health and Lifestyle **Electricity and** Healthy eating, digestion magnetism drugs, alcohol and Electricity series and parallel

circuits, current and charge, resistance, magnets and The periodic table electromagnets Energy

Forces:

Drag

Cells:

Microscope

Unicellular organisms

Hooke's Law

Food and fuels, kinetic theory, energy transfer (conduction, convection and radiation). power and work done

Separation techniques

YEAR

Mixtures Solutions Evaporation Distillation Chromatography

Metals and acids

Metals and their reactions with acids, oxygen and water, displacement Reactions, extracting metals and the properties and uses of ceramics, polymers and

composites

The Earth Structure of the Earth, sedimentary, igneous and metamorphic rock, the rock cycle,

the carbon cycle, climate change and recycling

Reproduction: Adolescence Reproductive systems Fertilisation and implantation

Development of a fetus The menstrual cycle Flowers and pollination Fertilisation and germination Seed dispersal

Comets The Solar System The Earth's orbit The Moon and eclipses

Space: The night sky

Satellites

Reactions: Chemical reactions Equations Oxidation Thermal decomposition Exothermic and endothern

Acids & Alkalis: Concentration Indicators and pH Neutralistion Making salts

Elements, Mixtures and Compounds: Atoms Reactions: Comparing elements

Introduction to and compunds Chemical reactions Introduction to the Chemical equations Periodic Table Introducing oxidation Chemical formulae and thermal decomposition Sound: Conservation of mass Different types of waves Exothermic and Sound and Pitch endothermic Structure of the ear Echoes and ultrasound Acids & Alkalis Indicators and pH Light: Reflection Neutralistion

Refraction

Making salts

Measuring forces

Particles:

Balanced and unbalanced

Plant and animal cells Specialised cells

Introduction module: Asking scientific questions